计算机与现代化 ›› 2013, Vol. 1 ›› Issue (7): 51-055.doi: 10.3969/j.issn.1006-2475.2013.07.013

• 算法设计与分析 • 上一篇    下一篇

基于混合优化的RBF神经网络模型研究

罗芳琼   

  1. 柳州师范高等专科学校数学与计算机科学系,广西柳州545004
  • 收稿日期:2013-02-28 修回日期:1900-01-01 出版日期:2013-07-17 发布日期:2013-07-17

Research on an Optimized RBF Neural Network Model Applied to CPI Forecast

LUO Fang-qiong   

  1. Department of Mathematics and Computer Science, Liuzhou Teachers College, Liuzhou 545004, China
  • Received:2013-02-28 Revised:1900-01-01 Online:2013-07-17 Published:2013-07-17

摘要: 根据我国居民消费价格指数的非线性特征及RBF神经网络参数难以确定的问题,建立基于正交最小二乘(OLS)、K-均值聚类、梯度下降法相结合,激活函数为高斯函数、反常S型函数和拟多二次函数的线性组合形式的混合优化RBF神经网络模型,同时运用所建模型对我国居民消费价格指数进行拟合和预测。实验结果表明,该模型能够很好地解决居民消费价格指数拟合和预测这一问题,预测精度比单独使用一种算法和基于高斯函数的混合算法都高,具有一定的普遍适用性。

关键词: 径向基神经网络, 优化混合算法, 居民消费价格指数预测

Abstract: This paper, aiming at the nonlinear characteristics of CPI and the parameters of being difficult to be objectively determined in RBF neural network, puts forward a kind of optimization of RBF neural network method which combines orthogonal least squares (OLS), K-means clustering and gradient descent algorithm, computing activation function with the linear combinations of Gauss, reflected sigmoidal and inverse multiquadrics radial basis functions, then builds a model for CPI to fit and forecast by using the optimization algorithm of RBF neural network. Experimental results show that the model is of a good convergence and generalization ability, the model has a certain universal applicability in the prediction performance which is obviously superior to the single method forecast and the hybrid network on Gauss kernel function.

Key words: RBF neural network, optimized hybrid algorithm, CPI forecasting